Eigenmotion-Based Detection of Intestinal Contractions
نویسندگان
چکیده
Intestinal contractions are one of the main features for analyzing intestinal motility and detecting different gastrointestinal pathologies. In this paper we propose Eigenmotion-based Contraction Detection (ECD), a novel approach for automatic annotation of intestinal contractions of video capsule endoscopy. Our approach extracts the main motion information of a set of contraction sequences in form of eigenmotions using Principal Component Analysis. Then, it uses a selection of them to represent the high dimension motion data. Finally, this contraction characterization is used to classify the contraction sequences by means of machine learning techniques. The experimental results show that motion information is useful in the contraction detection. Moreover, the proposed automatic method is essential to speed up the costly examination of the video capsule endoscopy.
منابع مشابه
Anisotropic Feature Extraction from Endoluminal Images for Detection of Intestinal Contractions
Wireless endoscopy is a very recent and at the same time unique technique allowing to visualize and study the occurrence of contractions and to analyze the intestine motility. Feature extraction is essential for getting efficient patterns to detect contractions in wireless video endoscopy of small intestine. We propose a novel method based on anisotropic image filtering and efficient statistica...
متن کاملLinear Radial Patterns Characterization for Automatic Detection of Tonic Intestinal Contractions
This work tackles the categorization of general linear radial patterns by means of the valleys and ridges detection and the use of descriptors of directional information, which are provided by steerable filters in different regions of the image. We successfully apply our proposal in the specific case of automatic detection of tonic contractions in video capsule endoscopy, which represent a para...
متن کاملDetection and Classification of Heart Premature Contractions via α-Level Binary Neyman-Pearson Radius Test: A Comparative Study
The aim of this study is to introduce a new methodology for isolation of ectopic rhythms of ambulatory electrocardiogram (ECG) holter data via appropriate statistical analyses imposing reasonable computational burden. First, the events of the ECG signal are detected and delineated using a robust wavelet-based algorithm. Then, using Binary Neyman-Pearson Radius test, an appropriate classifie...
متن کاملRecognizing Faces with Expressions: Within-class Space and Between-class Space
In this paper, we propose a novel technique for expression invariant face recognition, which is different from eigenfaces method from two aspects: the first is that instead of applying Principal Component Analysis (PCA) on the pixel domain to obtain eigenfaces, we train eigenmotion by applying PCA on motion vectors getting from the training face images with expression variations; the second is ...
متن کاملExperiments with SVM and Stratified Sampling with an Imbalanced Problem: Detection of Intestinal Contractions
In this paper we show some preliminary results of our research in the fieldwork of classification of imbalanced datasets with SVM and stratified sampling. Our main goal is to deal with the clinical problem of automatic intestinal contractions detection in endoscopic video images. The prevalence of contractions is very low, and this yields to highly skewed training sets. Stratified sampling toge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007